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[11 The paired catchment approach has been the predominant method for detecting the
effects of disturbance on catchment-scale hydrology. Notwithstanding, the utility of this
approach is limited by regression model sample size, variability between paired catchments,
type II error, and the inability of locating a long-term suitable control. An increasingly
common practice is to use rainfall-runoff models to discern the effect of disturbance on
hydrology, but few hydrologic model studies (1) consider problems associated with model
identification, (2) use formal statistical methods to evaluate the significance of hydrologic
change relative to variations in rainfall and streamflow, and (3) apply change detection
models to undisturbed catchments to test the approach. We present an alternative method
to the paired catchment approach and improve on stand-alone hydrologic modeling to
discern the effects of forest harvesting at the catchment scale. Our method combines rainfall-
runoff modeling to account for natural fluctuations in daily streamflow, uncertainty analyses
using the generalized likelihood uncertainty estimation method to identify and separate
hydrologic model uncertainty from unexplained variation, and GLS regression change
detection models to provide a formal experimental framework for detecting changes in
daily streamflow relative to variations in daily hydrologic and climatic data. We include
statistical analyses of climate variation and a two-part evaluation to explore model
performance and account for unexplained variation. Evaluations consisted of applying

our method to a control catchment and to a period prior to harvesting in a treated catchment
to demonstrate that our method was capable of capturing the absence of land use change in an
undisturbed catchment and capturing the absence of land use change during a period of
no disturbance in the harvested catchment. In addition, we explore the sensitivity of our
method to model identification, number of simulations, and likelihood thresholds for model
identification. We show that an increase in the number of model simulations does not
necessarily result in increased change detection performance. Our method is a potentially
useful alternative to the paired catchment approach where reference catchments are not
possible and to stand-alone hydrologic modeling for detecting the effects of land use change

on hydrology.
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1. Introduction

[2] The impact of forest management on catchment-scale
hydrology has remained a central research interest in water
resources for several decades [e.g., Bates, 1921; Bosch and
Hewlett, 1982; Moore and Wondzell, 2005]. There is little
doubt of the relationship between forests and hydrology
[Eisenbies et al., 2007], but the sustainability of water
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resources depends on understanding both the process-level
changes in runoff generation, storage, and movement of water
through catchments and the ability to detect changes that
occur following disturbance. Here we focus on the second:
the ability to detect catchment-level changes in hydrologic
behavior following disturbance.

[3] In this study we present a potentially useful alternative
to the paired catchment approach to detect the effects of
disturbance on catchment hydrology. The proposed change
detection method combines hydrologic modeling, uncertainty
analysis, and time series regression to isolate the effects of
forest harvesting from the large natural variability of daily
streamflow. The specific objectives of this study are (1) to use
hydrologic modeling to account for natural fluctuations in
daily streamflow, (2) to use model uncertainty analysis to
identify and separate model uncertainty from unexplained
variation, (3) to provide a formal experimental framework for
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detecting change in time series data, (4) to explore the sen-
sitivity of model change detection to different likelihood
thresholds, and (5) to explore the influence of simulation size
on change detection. There are a variety of terms used inter-
changeably in statistical and hydrologic modeling literature.
We define the following terms for clarity of our presentation:
model uncertainty is the variations in streamflow simulations
resulting from errors in model structure, model identification,
and observed input data; statistical uncertainty is the variation
of statistical model parameters given the parameters are
estimated using samples of data and the lack of model fit to
observed response and explanatory variables (residuals); and
residuals, €, are the difference between observations and
predicted values (y; — ;) from regression.

2. Literature Review

[4] Discerning the hydrologic responses of catchments to
natural and anthropogenic disturbances are based either on
the paired catchment approach (section 2.1) or on the use of
rainfall-runoff hydrologic models (section 2.2), but there is
no consensus on the most satisfactory approach [Hewlett,
1971; Schnorbus and Alila, 2004; Alila et al., 2009]. Below
we review how each method is used to detect change at the
catchment scale.

2.1. Methods Based on Paired Catchment Approach

[5s] The paired catchment approach [Hewlett, 1971] has
been the predominant method for detecting the effects of forest
management of hydrology, starting with first experiment
at Wagon Wheel Gap, Colorado, in 1910 [Bates, 1921].
Reviews of this approach are given by Bosch and Hewlett
[1982], Stednick [1996], Moore and Wondzell [2005]. The
paired catchment approach establishes statistical relation-
ships for catchment outlet responses (e.g., peak flow) between
two paired catchments during a calibration period, where both
catchments are undisturbed. Ideally, catchments are similar in
size, locale, and share similar land use, climate, and physio-
graphic attributes. Following calibration, land use treatments
are applied to one catchment (treated), while the other catch-
ment remains unchanged (control) and hydrologic differences
between them are indicative of treatment effect. The control
catchment serves as a climatic standard to account and correct
experimental results for meteorological influences.

[6] The standard approach for detecting change in the
paired catchment design is through ordinary least-squares
(OLS) regression. If observations are temporally scaled such
that they are independent, the regression model is

yi = Po +x61 +¢, (1)

where y; is the observed response variable at time j from the
treated catchment; x; is observed explanatory variable at time
j from the control catchment; 3’s are coefficients to be esti-
mated by regression; and ¢; is error at time j, where € ~ N(0, )

[7] This approach includes the following steps: (1) fit reg-
ression model (equation (1)) to predisturbance observations
from each catchment (calibration); (2) use calibration model to
compute prediction intervals and to predict streamflow in the
treated catchment based on observations from the control
during the postdisturbance period; (3) calculate model re-
siduals from equation (1) as y;— (J]x;), where y; and ( ;]x;) are

ZEGRE ET AL.: IN LIEU OF THE PAIRED CATCHMENT APPROACH

W11544

observed and predicted values for time j; and (4) perform
change detection on residuals by evaluating the proportion of
postdisturbance residuals that exceed prediction limits. A
disproportionate number of postdisturbance residuals exceed-
ing prediction limits is an indication of treatment effects
[Harr et al., 1979]. For example, using 95% prediction inter-
vals, significant changes are detected if >5% of the post-
disturbance residuals exceed the prediction limits.

[8] Important among several limitations of this approach
are the relatively few samples used for model development
and chronological pairing of events. Regression change
detection requires normally distributed and temporally inde-
pendent residuals, homoscedastic variance, and linearity
between response and explanatory variables [Ramsey and
Schafer, 2002]. In many cases these approaches are applied
to hydrologic response variables measured at annual [Harris,
1977] or storm-based [Rothacher, 1973] time steps when
observations are likely to meet the requirements of regression.
However, small sample size in model development can inflate
type I and type II error potentially obfuscating the true effects
of disturbances on hydrologic behavior. Alila et al. [2009]
discussed problems that arise from chronological pairing of
events and demonstrated how inappropriate pairing and sta-
tistical analysis resulted in incorrect estimates of changes in
flood magnitude because neither the pairing or tests account
for changes in variance or flood frequency. Chronological
pairing of floods is difficult because storms do not always
coincide in time, duration, intensity, or spatial extent [ Thomas
and Megahan, 1998] between the paired catchments.

[v] Advances in computational power and measurement
technology have permitted the development of regression
models using data collected at great frequencies [e.g., Jackson
etal.,2001; Swank et al.,2001] but only a few studies address
problems associated with autocorrelation. For example,
Watson et al. [2001] used OLS regression to study the effects
of forest harvesting on monthly streamflow by adjusting re-
siduals using a first-order (AR1) autocorrelation filter prior
to computing prediction limits. Generalized least-squares
(GLS) regression was used by Gomi et al. [2006] to fit
preharvest daily stream temperatures in British Columbia
and by Zégre [2009] to daily streamflow models in Oregon to
evaluate the effects of forest harvesting in headwater catch-
ments. In both studies, model residuals were adjusted to
account for up to three orders (AR3) of autocorrelation.

[10] The primary objective of time series modeling is to
detect and describe all sources of variation in the given
sequence of observations [Machiwal and Jha, 2008]. How-
ever, a trade-off between the frequency of streamflow
observations used to develop time series models and the
ability to detect changes in hydrology was reported by Zégre
[2009]. Zégre [2009] was not able to detect changes in runoff
following clear-cut harvesting (31% to 65% basin harvested)
in several experimental headwater catchment using daily GLS
models. However, significant increases in runoff were
detected using monthly streamflow regression models. It was
hypothesized that the inability to detect changes in runoff,
when it was plausible to expect such increases (area harvested
>20% [Bosch and Hewlett, 1982]), was related to not fully
accounting for all sources of variation between paired catch-
ments. The ability to confidently detect change following
disturbance using regression in the paired catchment approach
is a function of discerning the degree of intercatchment and
intracatchment variability of processes and timing between two
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paired catchments. Zégre [2009] attributed the unaccounted-
for variation to climatic heterogeneity (e.g., rainfall distribu-
tion) and to the timing of runoff processes (e.g., catchment
residence time) that desynchronized measured streamflow
at the catchment outlets.

2.2. Methods Based on Hydrologic Models

[11] Itis often impractical to identify and establish suitable
control catchments with respect to time, expense, location,
and market pressures. An increasingly common practice is to
use hydrologic models to discern the effects of disturbance on
catchment hydrology. Hydrologic models can be a useful
alternative to the paired catchment to detect changes under
various disturbances, climatic and physiographic conditions,
and spatial scales [Andréassian et al., 2003]. While hydro-
logic models have been widely used to evaluate hydrologic
response to land use change, few change detection studies
consider hydrologic model uncertainty or incorporate hydrol-
ogic modeling into formal statistical frameworks for change
detection. Further, we are not aware of studies that have
explored the influence of model simulation size on model
change detection.

[12] Two common applications of hydrologic models in
land use/land change studies are to (1) detect changes in
hydrology by comparing simulated and observed streamflow
[e.g., Lorup et al., 1998] and (2) use the model to simulate
changes in hydrology following disturbance [e.g., Post et al.,
1996]. The first approach (referred to as virtual control)
consists of calibrating a before-treatment model based on
observed rainfall and streamflow for use as a virtual control
catchment during the postdisturbance period to reconstruct
streamflow. Treatment effects are discerned as the differences
between observed and simulated streamflow. An underlying
assumption is that catchment behavior is stationary in both
periods, but this assumption is seldom tested. Several
examples of this application follow. (1) Brandt et al. [1988]
used a semidistributed rainfall-runoff model to simulate the
effects of clear-cut harvesting in small catchments in Sweden
by calibrating the model to observed streamflow prior to
harvesting and used the calibrated parameters and precipita-
tion after clear-cutting to simulate streamflow. The study did
not include statistical change detection or uncertainty analysis.
(2) Lavabre et al. [1993] used a lumped rainfall-runoff model
to assess the hydrologic response of a small Mediterranean
catchment to wildfire. They calibrated a two-parameter model
using predisturbance monthly streamflow and used it recon-
struct the streamflow following wildfire. Change detection
was assessed by calculating the residual difference between
observed and simulated streamflow during the postfire period
and did not include statistical methods or analyses of model
uncertainty. (3) Bowling et al. [2000] used a distributed
mechanistic model to evaluate the effects of forest harvesting
and forest roads on peak flow events. The model was cali-
brated using preharvest climate, streamflow, and land cover
conditions and used to reconstruct stormflow response during
postharvest periods. Hydrologic changes were assessed as the
difference between model simulations based on a single
optimized parameter set and observed runoff for each storm
and tested using the Mann-Kendall nonparametric test. Model
uncertainty was not demonstrated in this study. (4) Schreider
et al. [2002] used a lumped rainfall-runoff model to detect
the streamflow response to farm-dam development in nine
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catchments in Australia. They developed regional models with
several parameter sets calibrated in different agricultural
catchments to simulate streamflow at the beginning of their
study and used precipitation data to simulate streamflow over
the entire study period based on the regional models. Residual
errors were calculated as the difference between observed
streamflow and modeled streamflow, simulated from differ-
ent models. Though this study described variation in simu-
lated streamflows vis-4-vis varying model parameters, it did
not provide statistical tests to evaluate the credibility of the
trend in residuals.

[13] The second approach consists of calibrating different
models that resemble streamflow during different periods. In
this case, a model is calibrated to predisturbance streamflow
conditions using observed streamflow and precipitation, and
anew model is calibrated to postdisturbance conditions using
observed streamflow and precipitation from the postdistur-
bance period. In the virtual reference discussed above, the
model is used to reconstruct streamflow, where as this second
approach uses the model to simulate changes in hydrology
that result from disturbance. Two examples follow. (1) Kuczera
et al. [1993] tested the structure of two lumped parameter
catchment-scale models by forcing the models to describe the
effects of strip thinning of mountain ash on water yield. Both
models were calibrated during a pretreatment period with
100% forest cover. The model parameters that describe inter-
ception and evapotranspiration were modified to account for
the effect of strip thinning on water yield. Although this
approach does not provide formal statistical tests to detect
change, it does provide an interesting means of generating
hypotheses concerning process-level changes in catchment
hydrology. (2) Post et al. [1996] used a lumped rainfall-runoff
model to simulate the hydrologic response of Picaninny Creek
to clear-cut harvesting. Daily rainfall, air temperature, and
streamflows from 36 years were used to calibrate seven pre-
harvest models, one during-harvest model, and 10 postharvest
models. Changes in hydrology were discerned by comparing
preharvest and postharvest model parameter sets and volu-
metric changes in streamflow.

[14] Seibert and McDonnell [2010] and Seibert et al.
[2010] combined both approaches discussed above to
detect and model forest harvesting and wildfire effects
on streamflow using a rainfall-runoff model applied to the
H. J. Andrews (Oregon) and Entiat (Washington) Experi-
mental Forests. Also introduced in these studies is the use
of a model-to-model approach that compares runoff sim-
ulated with parameter sets calibrated for periods before and
after land cover changes. This third approach allows
assessment of integrated catchment behavior rather than
single parameters [Seibert and McDonnell, 2010]. In both
studies, Monte Carlo methods were used to generate large
populations of parameter sets and estimate parameter
uncertainty. The nonparametric Wilcoxon rank-sum test
was used to test for changes.

3. Conceptual Framework

[15] In this section we present a general conceptual frame-
work of our proposed method. Our approach differs from
previous methods in that we combine hydrologic modeling,
uncertainty analysis, and regression change detection to iso-
late the effects of forest harvesting from input errors, model
identification, and the large natural variability attributed to
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daily streamflow. We use a hydrologic model in the virtual
reference approach to reconstruct streamflow.

3.1.

[16] The selection of model structure is dictated by the
specific research objectives. For example, if the goal is to
generate hypotheses of how streamflow generation processes
change following disturbance, a more complex, mechanistic
model is appropriate. If the objective is to detect volumetric
changes in streamflow at the outlet of a catchment, a simple
rainfall-runoff model is more appropriate. The critical point is
to select a model that captures the temporal variation and sta-
bility of the rainfall-runoff relationship in a specific catchment.

[17] Iterative methods can be used to find an optimal set(s)
of model parameters and sensitivity analysis can be used to
evaluate the influence of individual parameters on model per-
formance. However, uncertainties that arise from model iden-
tification, structure, boundary conditions, and measurement
error make the search for a optimal parameter set unrealistic or
impractical in most hydrologic systems [McMichael et al.,
2006]. Iterative methods, such as Monte Carlo, can be used
to randomly sample across parameter ranges to generate a large
number of model realizations that are used to explore param-
eter sensitivity and generate populations of acceptable models.

Model Selection and Generation of Realizations

3.2. Selection of Acceptable Models

[18] Performance of model realizations is evaluated on the
basis of a likelihood-based measure of the agreement between
observed and simulated streamflow. Models that produce
acceptable simulations based on the defined likelihood
measure are retained as behavioral models. Acceptance of
model realizations based on a likelihood criteria assumes that
population of models represents the likely behavior of the
catchment under scrutiny. By focusing our analysis on a
population of behavioral models rather than a single opti-
mized parameter set, we acknowledge the coexistence of
alternative models that perform equally well when compared
to observed calibration data.

3.3. Determination of Uncertainty Bounds

[19] Simulation uncertainty bounds can be placed around
observed streamflow to estimate how well the population of
behavioral models represent the systems under consideration.
Simulated streamflows for each time step are ranked in
ascending order to give a cumulative distribution of stream-
flow for each time step. Quantiles are then calculated based on
the cumulative distributions to represent model uncertainty at
each time step. For example, simulated streamflow from the
upper 97.5th and lower 2.5th percentiles per day would be
used to calculate 95% uncertainty bounds for a daily stream-
flow model. By plotting observed daily streamflow and the
upper and lower simulations for each time step, we create
uncertainty bounds that show when the hydrologic model
over- or undersimulates relative to observed streamflow.

3.4. Discernment of Hydrologic Changes

[20] Unlike the paired catchment approach which relies on
formal statistical approaches to detect change, hydrologic
modeling studies seldom include statistical tests to evaluate
the significance of hydrologic change. Where present, the
focus has been on nonparametric methods that offer limited
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information other than differences in central tendency (e.g.,
Wilcoxon test), distribution, or changes in variance (e.g.,
Kolmogorov-Smirnov) [Helsel and Hirsch, 1992]. The final
step in our approach is to use regression methods to evaluate
the significance of hydrologic change relative to variations
of measured rainfall and runoff time series and uncertainty in
modeled streamflow. To achieve this we extend equation (1)
to allow for temporally autocorrelated residuals from our
daily streamflow models and use behavioral model simula-
tions as explanatory variables in our regression models
(Figure 1) to ascertain the significance of hydrologic change.

4. Methods

4.1. Study Area and Hydrometric Data

[21] Fenton and DeMersseman Creeks are headwater
catchments of the Hinkle Creek Paired Watershed Study
located on the foothills of the west slope of the southern Oregon
Cascades Mountains, USA (Figure 2). Fenton Creek (referred
to as treated catchment) is a 0.23 km?® catchment with eleva-
tions that range from 615 to 815 m and slopes that range from
12% to 30%. DeMersseman Creek (control) is a 1.56 km?
catchment with elevations that range that from 650 to 1,260 m
and slopes that range from 14% to 54%. Hinkle Creek is
located in the rain-snow transitional zone with a climate
dominated by frontal Pacific storms from November to
May and dry, warm conditions during the remainder of the
year. Mean annual precipitation at 839 m is approximately
1,800 mm, with a mean annual temperature of 8.5°C. Fenton
Creek is entirely forested while DeMersseman Creek is mostly
forested, with approximately 3% of catchment area in roads. In
both catchments, slopes are forested by 60 year old, harvest-
regenerated stands of Douglas fir (Pseudotsuga menziesii).
Riparian vegetation in higher order stream networks is com-
posed mainly of overstory species such as red alder (4lnus
rubra) and understory species such as huckleberry (Vaccinium
parvifolium) and sword fem (Polystichum munitum) while
low-order headwater catchments are dominated by Douglas fir.

[22] Contemporary forest harvesting methods, defined by
the Oregon Forest Practice Rules, were used to clear-cut har-
vest trees in the treated catchment, while the control catchment
remained untouched. Harvesting started in mid-July 2005
and continued through January 2006 and removed trees from
65% (0.15 km?) of the watershed area in Fenton Creek.

[23] Streamflow was recorded at 10 min intervals from
November 2003 through January 2008 at the outlet of each
catchment using modified Parshall flumes equipped with
automated Druck 1830 pressure transducers and Campbell
Scientific CR 10x dataloggers. Climate data were measured at
amicrometeorological station located between the North Fork
and South Fork experimental basins (Figure 2). Air temper-
ature, relative humidity, precipitation, wind speed, and pho-
tosynthetic active radiation were recorded at 10 min intervals
from December 2003 through January 2008. Long-term cli-
mate data from a nearby meteorological station (Idleyld Park
COOQP ID 354126) were used to supplement climatic data
prior to monitoring in the experimental catchments.

4.2. Hydrologic Model Description

[24] Rainfall-runoff models have been widely used to
detect catchment-scale changes in hydrology [e.g., Brandt
et al., 1988; Post et al., 1996]. We chose a model with
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Vi = Po + 3|C1,j,31 + &

- )

Xj,; — lower, median, and
upper daily streamflow
simulations from GLUE

V; — observed daily
streamflow

Figure 1. Regression model construct for detecting effects
of forest harvesting and characterizing the range of model
uncertainty on daily streamflow. GLS regression models were
developed using median and 95th percentile streamflow simu-
lations identified using GLUE based on 850,000 Monte Carlo
simulations. Daily observed streamflow were used as the
response variable and simulated streamflow were used as the
explanatory variable in three separate GLS regression models.

(1) readily available, low data requirements and whose
(2) structure lent itself to efficiently address model sensitivity
and uncertainty analysis.

[25] Weusedthe HBV-EC model [Hamilton et al.,2000], a
modified version of the original HBV model [Bergstrim,
1995], to simulate daily streamflow during a preharvest
period and to reconstruct streamflows following a period of
forest harvesting. HBV-EC is a partially distributed concep-
tual model that simulates streamflow using daily time series
of precipitation, air temperature, and long-term monthly
potential evaporation [Bergstrém, 1995]. Basins are divided
into subcatchments based on elevation and land use zones to
represent lateral climatic and vegetation gradients across the
catchment. The HBV model consists of three components
(Table 1): a snow routine for snow accumulation and melt
based on the degree-day method; a soil routine that controls
the proportion of rainwater and snowmelt that generates excess
water after considering soil moisture and evaporation
requirements; and a runoff transfer routine that consists of an
upper, nonlinear reservoir that represents fast discharge and a
lower linear reservoir that represents slow discharge or base-
flow. Detailed descriptions of the HBV model can be found,
for example, in work by Bergstrom [1995] and Seibert [1997].
4.2.1. Model Identification, Calibration,
and Uncertainty Analysis Using the Generalized
Likelihood Uncertainty Estimation Method

[26] Experimental catchments were delineated using the
EnSim Hydrologic modeling platform [Canadian Hydraulics
Centre, 2006] using the Hinkle Creek, OR USGS 10-m
digital elevation model. Catchments were divided into five
40 m elevation zones. A record of climate data for 1,618 days
was distributed into three periods; a model spin-up period
(123 days), model calibration period (533 days), and post-
harvest period (962 days). Observed time series data of daily
streamflow were used for model calibration and evaluation.

[27] Regional sensitivity analysis (RSA) [Hornberger and
Spear, 1981] and the generalized likelihood uncertainty
estimation (GLUE) [Beven and Binley, 1992] were used to
characterize parameter sensitivity and model uncertainty.
GLUE has been reviewed by Beven [2002] and is widely used
in the hydrologic modeling literature [e.g., Freer et al., 1996;
McMichael et al., 2006] due to its ease of implementation,
computational efficiency, and flexibility of likelihood mea-
sure [Blasone et al., 2008]. GLUE is a Bayesian-like parameter
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estimation method that rejects the concept that there is a
globally optimal parameter set and that multiple parameter
sets have an equal likelihood of providing acceptable simu-
lations of the system in question. GLUE has been criticized
for not being formally Bayesian [Vrugt et al., 2009], sub-
jective [Blasone et al., 2008], and fails to produce uncertainty
bounds that capture the precision of estimated parameters and
differences between simulations and observations [Stedinger
et al., 2008]. However, recent studies have demonstrated
similar estimates of model and parameter uncertainty using
GLUE and formal Bayesian uncertainty approaches [ Vrugt
et al., 2009; Jin et al., 2010]. GLUE allows the conditional
assessment of model uncertainty based on prior knowledge
of model acceptability to identify distributions of behavioral
models. Behavioral models are subjectively selected on the
basis of likelihood criteria. We chose GLUE because of
its flexibility in defining the likelihood definition that is used
to define behavioral models that allows for having no
assumptions about the error of our hydrologic model [Jin
et al., 2010].

[28] Behavioral models are used to construct probability
distributions of model parameters and uncertainty bounds
[Beven and Binley, 1992]. GLUE rescales the likelihood
weights from behavioral models to yield cumulative dis-
tributions of streamflow simulations at the respective time
step [Freer et al., 1996]. Uncertainty bounds are calculated
using the specified streamflow percentiles. Although GLUE
provides estimates for uncertainty due to parameter sampling,
it does not provide insight on uncertainty due to model
structure or errors in input variables. Therefore the GLUE
methodology is bound to underestimate total uncertainty.

[29] The Monte Carlo analysis toolbox (MCAT) [ Wagener
et al.,2004] was used to implement a variation of RSA [Freer
et al., 1996] and GLUE to assess the impacts of parameter
sensitivity and uncertainty on daily streamflow simulations
using the HBV-EC model. Initial models were identified by
generating 850,000 Monte Carlo simulations for each catch-
ment conditioned on uniform parameter distributions for
15 parameters (Table 1). With little prior information about
the likely distributions of each parameter, we choose to sam-
ple from independent uniform samples across parameter
ranges [Beven, 2002]. Uncertainty bounds were based on the
95th percentiles (2.5th and 97.5th) streamflow simulations
and conditioned on the posterior distributions for sensitive
parameters identified from RSA and GLUE.

[30] The Nash and Sutcliffe [1970] likelihood measure,
R.¢, was used to identify our populations of behavioral
models. The specified level of rejection criteria is arbitrary.
However, it is important to select a threshold to identify a
population of behavioral models that captures the range of
natural variability and model uncertainty. We used three
different R.s thresholds (0.3, 0.4, and 0.6) to evaluate the
impact of behavioral model definition on our ability to detect
change in the treated catchment only. However, we focus our
discussion of the effects of forest harvesting on behavioral
models defined by R.g> 0.4. R is calculated by

E(Qobs, - Qsim,)2

Regr = 1 — =iy
" Z (Qobs, - Qobs)2

(2)

where Qobs’ is observed streamflow on day j, Qs is the mean
observed streamflow, and Qsimj is the simulated streamflow
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Figure 2. Location of the Hinkle Creek Paired Watershed Study (latitude 43°25'25", longitude
123°02'17"). Fenton Creek is the treated catchment; DeMersseman Creek is the control catchment.

on day j from the hydrologic model. R s ranges from minus
infinity to 1, with higher values indicating better agreement
between observed and simulated streamflow [Legates and
McCabe, 1999].

4.3. Detecting the Effects of Forest Harvesting
on Daily Streamflow

[31] Our method of change detection relies heavily on the
approach utilized in paired catchment studies. Whereas paired

catchment studies fit regression models for preharvest data
between control and treated catchments, we instead devel-
oped preharvest regression models between daily observed
streamflow and simulated streamflow from the GLUE-
generated uncertainty percentiles. To fit these statistical models
we used GLS, because in situations where autocorrelated
residuals occur, GLS regression is appropriate as it allows
the independence assumption required of equation (1) to be
relaxed and incorporates this correlation structure into the
estimation of linear model parameters [Myers, 1990]. GLS
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Table 1. Initial and Posterior Model Parameters From 850,000 Monte Carlo Simulations Using HBV-EC for Daily Streamflow®

Posterior Range

Initial Range Treated Control
Parameter Explanation Unit Min Max Min Max Min Max
Routing routine
KF Fast reservoir component - 0 1 0.54 0.88 0.28 0.82
KS Slow reservoir component - 0 1 0.12 0.83 0.05 0.98
FRAC Fraction of runoff directed - 0.1 1 0.12 0.9 0.19 0.9
to fast reservoir
@ Fast reservoir exponent - 0 1 0.42 0.99 0.2 0.96
Soil routine
FC Soil field capacity mm 100 400 120 360 150 380
8 Controls relationship between soil - 0 2 - - - -
infiltration and soil water release
LP Soil moisture content threshold - 0 1 - - - -
where evaporation becomes limited
Snow routine
DC Snowmelt factor for summer solstice °Cmm ' d* 0 4 0.16 3.8 0.9 3.1
CRFR Controls rate at which liquid °Cmm ' d’ 0 4 0.1 4 0.4 3.7
refreezes into snowpack
Climate
RFCF Rainfall correction factor - 1 2 - - - -
SFCF Snowfall correction factor - 1 1.5 1.2 1.5 1 1.5
PGRADL Fractional increase in precipitation - 0.001 0.01 - - - -
with elevation
TLAPSE Temperature lapse rate °Cm’! 0.006 0.01 - - - -
TT Threshold air temperature °C -1.5 2.5 -1.2 0.36 -0.76 2.4
ETF Temperature anomaly correction - 0 1 - - - -

of potential evapotranspiration

“Posterior parameter ranges presented for sensitive parameters are based on modified RSA [Freer et al., 1996].

also allows us to use Akaike information criteria (AIC)
[Padmanabhan and Rao, 1982] to determine the order of
autoregressive (AR) models used to address the correlation
structure in model variance [Salas, 1993].

[32] The results from Monte Carlo simulations can be
processed in the regression framework in different ways.
A first approach (approach a) is based on fitting an indi-
vidual regression model to simulations for each behavioral
model and aggregate the responses of all models to eval-
uate change. A second approach (approach b) aggregates
simulations from all behavioral models into median and
percentile streamflows that are then used in regression
analyses to evaluate change. These approaches differ in
that approach a gets more at the variations attributed to
the sampling distributions of the different regression
models, whereas approach b gets at the uncertainty of
hydrologic model output and the influence of hydrologic
model uncertainty on our ability to detect change. The
impact of regression model variation on change detection
have been discussed elsewhere [Loftis et al., 2001]; here
we use approach b to focus on the impact of hydrol-
ogic model uncertainty within the context of regression
change detection.

[33] Preharvest regression models were developed using
daily streamflow from 1 February 2004 to 17 July 2005
(533 days). Sinusoidal trigonometric terms can be included
as covariates in time series regression to account for
temporal dependencies such as lag or seasonality between
responses but did not improve model performance and
were not included in our models. This is attributed to
climatic forcing in the rainfall-runoff model and the use
of a single catchment instead of paired observations used

in the traditional paired catchment approach. The median
model was used to reconstruct streamflow during the
postharvest period (18 July 2005 to 17 January 2008),
without harvesting effects. The lower and upper models
were used to explore how a hydrologic model that con-
sistently under- or overestimates streamflow affects our
ability to detect change using regression. These three model
outputs were then used as predictors to estimate postharvest
streamflow without harvesting effects using regression
parameters estimated from the preharvest GLS regression
models (Figure 1). The residuals from these statistical
models were then used to discern treatment effects as
described below.

[34] To evaluate the statistical evidence of treatment
effects, we relied on the method described and applied by
Watson et al. [2001] and Gomi et al. [2006] for paired
catchment studies. This method begins by filtering model
residuals using the AR time series model that leaves the
estimated posttreatment innovations, fi;:

ﬂj = 5} - ¢;1 éj—l - ¢;2éj72 — ... ékéj—ky (3)

where ¢f,- is the estimated autocorrelation coefficient of error
term at lag k. From equation (1), lete; =[ey, €2, €3, ..., €, ..., €],
where Jis the total number of time steps. The jth residual, €, is
estimated as € = (y; — 3,), and ¢, is the residual error term
k days before day j; ¢; is the estimated autocorrelation coef-
ficient of error term at lag k. Obtaining innovations is
important because under the null hypothesis of no treatment
effects, innovations are independent and randomly distributed
and /i; ~ N(O, 0?), with the same o as estimated during the
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pretreatment phase of the experiment. The 95% prediction
intervals, PI, at time j are calculated by

Pl = 0+ 1.96\/Var(ji;) (4)

where Var(ji;) is the prediction variance incorporating uncer-
tainty associated with predicting future values, estimated
linear model, and autocovariance parameters. Comparing
these posttreatment innovations to the prediction intervals
established based on the pretreatment period allows us to
ascertain if a significant number of these innovations fall
above our prediction limits, thus signaling a significant
increase in runoff following forest harvest activities.

4.4. Change Detection Evaluation

[35] Control catchments are used in the paired catchment
design to account for climatic variation between experimental
catchments overtime. However, the use of controls in mod-
eling studies are often overlooked; therefore the modeler must
assume that catchment behavior would be the same overtime
if there were no disturbances. Unaccounted-for variation
from climatic nonstationarity or unknown natural shifts in
hydrologic behavior can obfuscate or elevate the effects of
disturbance, resulting in the rejection of the null hypothesis,
Hy, when in fact it is true (type I error) or accepting H, when
it is false (type II error).

[36] To assess the significance of climatic variability
between the preharvest and postharvest periods, total pre-
cipitation and mean temperature were calculated for each
month within each experimental phase. Monthly values of
precipitation and temperature were temporally autocor-
related, and we therefore relied on GLS to compute 7 tests on
total monthly precipitation and mean monthly temperature
between these two periods. To model the temporal autocor-
relation we considered a suite of AR models and chose AR
structures based on AIC values of the GLS model fits.

[37] We used a two-part evaluation to explore model per-
formance and account for unexplained variation. Specifically,
we applied our method to a control catchment to demonstrate
that our method was capable of capturing the absence of
land use change in an undisturbed catchment (herein referred
to as evaluation 1) and to a period prior to harvesting in the
treated catchment (evaluation 2) to demonstrate that our
method was capable of capturing the absence of land use
change during a period of no land use change in this catchment.
For evaluation 1, we imposed a hypothetical treatment period
(Figure 3) similar to the period of harvesting in the treated
catchment, to partition streamflow records into two testable
populations. Since harvesting activities were hypothetical in
the control catchment, we expected no difference between
preharvest and postharvest periods. The detection of signifi-
cant changes in the control would indicate errors in model
structure, statistical errors, and/or unaccounted-for variation in
climatic or hydrologic input data. For evaluation 2, a subset of
the preharvest data (450 days; 1 February 2004 to 25 April
2005) for the treated catchment was used to develop new
regression models based on the lower, median, and upper
uncertainty streamflow time series. Change detection was
performed on the remaining 80 days from the original pre-
harvest data set (533 days) to show that our method was
capable of capturing the absence of land use change. The
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two-part evaluation serves to test the assumption that, in
the absence of disturbance, catchment behavior is similar
through time.

5. Results

[38] Observed streamflow and median simulated stream-
flows from GLUE and precipitation for the study period are
shown in Figure 3. Observed and simulated streamflow are
consistently greater during the postharvest periods for the
treated and control catchments. The most precipitation and
highest peak discharge during the 2 year study occurred
during the 2006 water year (October 1-September 31), which
was the first year following harvesting in the harvest catch-
ment. The two largest peak flow measured in the North Fork
had recurrence periods of approximately 8 and 3 years (8 and
7 m® 57!, respectively). Most of the storms had subannual
recurrence periods.

5.1. Model Identification, Calibration,
and Uncertainty Analysis

[39] Monte Carlo simulations were used to generate
850,000 candidate models for model sensitivity and uncer-
tainty analyses. Of the 15 model parameters sampled, 9 showed
sensitivity: KF, KS, FRAC, o, FC, DC, CRFR, SFCF, and TT
(Table 1). The temperature threshold parameter TT and slow
reservoir component KS showed the greatest sensitivity for
predicting streamflow in our catchments.

[40] Uncertainty analysis was estimated using GLUE by
randomly sampling parameter values conditioned on uniform
parameter distributions for the nine sensitive parameters. Of
the 850,000 models, 97,577 and 65,914 were retained for the
treated and control catchments based on a rejection criteria
R > 0.4 (Table 2). 146,824 and 1,332 behavioral models
were identified for the treated catchment based on R ¢ > 0.3
and 0.6, respectively (the impact of different levels of R.¢ on
detecting change are discussed in section 6.2.3). Uncertainty
bounds were calculated using the 2.5th and 97.5th simulated
streamflow percentiles. Observed streamflow fell within the
uncertainty bounds 81% and 73% of days during calibration
period in the treated and control catchments, respectively
(Figure 4). Observed streamflow that exceeded the 95th
percentile uncertainty bounds accounted for approximately
4% (31 mm) and 5% (91 mm) of total annual streamflow in
the treated and control catchments.

[41] Generally, the HBV-EC model under-simulated
(observed streamflow >97.5th bounds) streamflow in the
treated catchment during March and May, with the greatest
errors by volume occurring in March 2005 (9 mm/~1%). In
the control, under-simulated errors occurred during May and
June, with the greatest errors by volume (49 mm/~3%) in June
2004 (Figure 5). Errors associated with over-simulation were
consistently less, with the greatest error by volume occurring
in May 2005 (6.7 mm/<1%) in the harvest catchment and
in March 2005 (16 mm/1%) in the control (Figure 5).

5.2. Change Detection Results and Evaluation

[42] To ascertain the impact of climatic variability on
changes in daily streamflow, we used GLS to compute ¢ tests
on total monthly precipitation and mean monthly temperature
between the preharvest and postharvest periods. GLS models
for precipitation and temperature exhibited, respectively,
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Figure 3. Daily precipitation and observed and simulated streamflow for (a) treated and (b) control catch-
ments in the Hinkle Creek experimental catchments. Simulated streamflows based on median simulations
from GLUE. Actual (treated) and hypothetical (control) harvesting periods shaded.

fourth (AR 4) and third order (AR 3) autoregressive variance
structures. There was not statistical evidence to suggest
that either total monthly precipitation (p value = 0.2910) or
mean monthly temperature ( p value =0.2376) differed between
the preharvest and postharvest periods.

[43] Posterior parameter distributions derived from RSA
and GLUE were used to reconstruct daily streamflow in the
treated catchment and to simulate daily streamflow in the
control catchment. Three regression models were developed
for each catchment using median simulations and the lower
and upper uncertainty percentiles. AIC were used to identify
parsimonious autocorrelation structures for each model. All
regression models exhibited a second-order autoregressive
(AR 2) variance structure; s, of regression models (R.¢> 0.4)
were 0.003 and 0.04 for treated and control catchments,

respectively. Results of the regression and autoregressive
modeling are summarized in Table 2.
5.2.1. Detecting the Effects of Forest Harvesting
in the Treated Catchment

[44] Nine percent of the postharvest median model inno-
vations exceeded the 95% prediction intervals, suggesting
statistically significant increases in daily streamflow (Table 2
and Figure 6). Lower and upper models, based on the 2.5th
and 97.5th percentiles, were used to characterize the range of
detectability under model uncertainty and similarly showed
9% of postharvest innovations exceededing the prediction
limits (Table 2).

[45] Estimated changes in streamflow following forest
harvesting were calculated as the residual difference between
observed and predicted streamflow. Deviations between
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Table 2. Relationship between Nash-Sutcliffe [Nash-Sutcliffe,
1970] R.g Rejection Thresholds, Population of Behavioral Mod-
els, Standard Error of GLS Models, and Change Detection Under
Three Different Levels of Hydrologic Model Uncertainty for the
Treated and Control Catchments®

GLS Model® (%)

Threshold®  Behavioral Models® Lower Median Upper
Treated
0.30 146,824 8 (0.004) 8 (0.004) 8 (0.004)
0.40 97,577 9 (0.003) 9 (0.003) 9 (0.003)
0.60 1,332 10 (0.003) 10 (0.003) 10 (0.003)
Control
0.40 65,914 4 (0.04) 4 (0.04) 4 (0.04)

*Statistically significant changes are detected when >5% of the
postdisturbance innovations exceed the 95% prediction intervals.

*Retr rejection criterion threshold.

“The number of behavioral models resulting from specified rejection
criterion threshold.

4Proportion calculated as the ratio of postharvest innovations >95%
prediction intervals to total population of postharvest innovations. Standard
error of GLS regression model, s,, is given in parentheses.

observed and predicted streamflow following harvesting
varied by day, season, and year (Figure 7). Maximum daily
streamflow increased by as much as 31 mm for each model.
Average seasonal increases based on all models were greatest
during winter (485 mm), followed by spring (146 mm), fall
(114 mm), and then summer (100 mm) (Table 3).
5.2.2. Evaluation of the Change Detection Models

[46] A two-part evaluation was used to assess change
detection model performance. The objective was to assess if
our method was capable of capturing the absence of land use
changes. Evaluation 1 consisted of applying our method to a
control catchment, where no harvesting took place; evalua-
tion 2 was applied during a period prior to harvesting in the
treated catchment. Following the hypothetical harvest period
in the control catchment, approximately 4% of innovations
from evaluation 1 exceeded 95% prediction intervals for the
median, lower, and upper models, respectively (Figure 8 and
Table 2). Evaluation 2 consisted of applying our method to
a period prior to harvesting in the treated catchment; 3% of
the innovations exceeded the prediction limits for each
model (Figure 9). In both cases, innovations were not sig-
nificantly different from zero. Therefore, we have no reason
to reject the null hypothesis that preharvest and the hypo-
thetical postharvest innovations differ in the control catch-
ment or during the evaluation period prior to harvesting in the
treated catchment.

6. Discussion

6.1. Sources of Variation

[47] In general, the HBV-EC model was better suited for
simulating streamflow in the treated catchment than the
control. In the treated catchment, observed streamflow fell
within the uncertainty bounds approximately 81% of the time
during calibration compared to 73% in the control catchment.
Deviations between simulated and observed streamflows in
each catchment were attributed to input errors, model struc-
ture, and identification.

6.1.1. Model Inputs and Observed Data

[48] Input error is likely attributed to errors in measured

streamflow, particularly during summer lowflows and large
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peak flows, and the short observed streamflow and climate
time series used for model calibration (~1.5 years) and sim-
ulation (~2.5 years). Large measurement error during low-
flow conditions are attributed to flume design and installation;
flumes in Hinkle Creek were designed to measure hydrology
when a larger portion of streamflow volume flows in the
channel. Accurate streamflow measurements were more dif-
ficult during lowflow conditions when a larger proportion
of streamflow volume is transported in the substrate below
the base of the flume thereby bypassing pressure transducers.
Uncertainty is additionally attributed to the relatively short
model calibration period. A short calibration period can
increase model uncertainty by not fully capturing the range
of hydrologic and climatic variability that drive model out-
come and exacerbate parameter identification. However,
there is no rule concerning the length of the calibration period;
the data should cover a range of significant events to find
stable model parameters [Bergstrom, 1991]. An exploration
of uncertainty due to the length of our calibration period is
beyond the scope of this paper. We contend, however, that a
longer preharvest model calibration period would exert little
influence over the results of this study. The influence of
different levels of hydrologic model uncertainty on change
detection is discussed in section 6.2.3.

[49] By assessing the evidence that climate was similar
between the preharvest and postharvest periods, we are able to
attribute changes in streamflow response in the treated
catchment to harvesting or other sources of unexplained
variation rather than to climatic variations during the period of
this study. However, climate data were measured at a single
station at an elevation of 839 m and used to simulate
streamflow in both catchment that have considerably different
hypsometry and watershed area. Elevation in the treated
catchment ranges from 615 m at the outlet to 815 m at the
drainage divide, with 100% of the total catchment area
(0.23 km?) below the climate station. In contrast, elevations
and area in the control catchment range from 658 to 1,260 m,
with 85% of the 1.56 km? catchment area above the climate
station. The parameter PGRADL is used to adjust precipita-
tion for elevation difference but showed little sensitivity for
either catchment. Additional heterogeneity is introduced in
the distribution of elevation bands, precipitation, and catch-
ment attributes. For example, aspect in the treated catchment
is predominantly north facing, whereas it is predominantly
southwest facing in the control.

6.1.2. Model Structure and Identification

[s0] We used the HBV-EC model due to its relatively
simple structure and low data requirements. Though the
structure of this model has at best a moderate capacity to
simulate hydrologic processes, we found the model to be
appropriate for conducting uncertainty analyses and detecting
changes at the catchment scale. However, model structure and
identification are not without error. For example, the HBV-
EC model systematically undersimulated streamflow during
spring and summer periods when hydrology is dominated by
lowflow hydrology and during winter when large peak flows
are dominated by rain-on-snow hydrology [Jones and Post,
2004]. Lowflow hydrology in the western Cascades are sus-
tained by baseflow that may be desynchronized from ante-
cedent soil moisture conditions [Moore and Wondzell, 2005].

[51] Alternatively, the snow routine in the HBV model is
more appropriate for high mountain regimes where snow
accumulates during winter and melts during spring and
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Figure 4. The 95th percentile uncertainty bounds (GLUE) for simulated streamflows and observed
streamflow during model calibration period for (a) treated and (b) control catchments. GLUE analysis
based on 850,000 simulations. The observed streamflow fell within uncertainty bounds 81 and 73% of
days during the calibration period for the treated and control catchments and accounted for respectively
4% (31 mm) and 5% (91 mm) of total annual streamflow during the calibration period.

summer. It is not well suited to modeling rain-on-snow
events, especially at a daily time step. Snowfall was not
implicitly measured in this study. Rather, the model classifies
all precipitation as either rain or snow based on threshold
value TT and uses a fixed temperature lapse rate (TLAPSE)
that incorrectly predicts snowfall rather than rain and melt at
higher elevations when storms are associated with weather
inversions [Moore, 1993]. This effect of temperature mis-
classification on simulated streamflow can be seen in
Figures 4 and 5, where under- and oversimulation predomi-
nantly occur during spring.

[s2] The aggregation of processes and interactions of
parameters in the HBV model structure makes it difficult to
rely on field observations to adequately inform model iden-
tification and calibration. Therefore, we relied on sensitivity
analysis to define parameter space and conditioned Monte
Carlo sampling on uniform distributions. We chose uniform
distributions due to the lack of information regarding internal
behavior [Wagener and Kollat, 2007] and process observa-
tions of the examined catchments as well as the ease of
implementing such a distribution. The use of uniform sam-
pling ensures that each set of chosen parameter values is
evaluated as a set, implicitly reflecting interactions and

insensitivities of model parameters, thereby avoiding the need
to sample from multivariate sets of correlated distributions
[Freer et al., 1996]. Although not assessed in this study,
additional field measurements such as isotopic hydrograph
separation [Sklash and Farvolden, 1979] could be used to
further describe and identify parameter distributions to more
appropriately model catchment processes, thereby increasing
model performance.

[53] TT and KS were identified as critical parameters for
simulating daily streamflow in our catchments. Seibert [1997]
reported similar sensitivity for TT in two Swedish catch-
ments, and Hamilton et al. [2000] for KS for a Canadian
catchment. The cumulative distributions of TT (not shown)
for the control catchment showed higher spread than the
treated catchment, indicating higher model sensitivity
[Wagener and Kollat, 2007]. Differences in parameter
distributions and sensitivity of TT values in this study are
explained by elevational differences between catchments.
Optimized parameter values for TT ranged from —1.2 to 0.36
for the treated and —0.76 to 2.4 for the control and are similar
to ranges reported in other studies. For example, the lower
and upper tails of our TT distributions are larger than those
reported by Hamilton et al. [2000] (—0.20 to 0.80) but smaller
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Figure 5. Monthly simulation errors for (a) treated and (b) control catchments during calibration
period. Error defined by streamflow observations not contained within the 95th percentile uncertainty
bounds. Errors are calculated as the difference between observed streamflow and nearest uncertainty
bound totaled by month. Undersimulation occurs when observed streamflow is above upper 97.5th
percentile bound; oversimulation occurs when observed streamflow is below lower 2.5th percentile bound.

than those reported by Seibert [1997] (—2.5 to 2.5) and Seibert
and McDonnell [2010] (—1.5 to 2.5). Hundecha and Bardossy
[2004] and Seibert [1999] showed positive sensitivity for
model parameters that controlled soil water balance (param-
eter FC) and runoff routing (KS). The differences in param-
eter ranges between these studies and our study are explained
by the different methods of parameter optimization, errors in
calibration data in each catchment, and regional differences in
climate and catchment processes.

[s4] The percentage of streamflow observations falling
within the estimated uncertainty bounds and the proportion
of behavioral models identified in our study are similar to
other GLUE-based studies [Freer et al., 1996; McMichael
et al., 2006]. Previous studies have explored the influence
of the choice of likelihood measure and/or threshold defini-
tion on behavioral model identification and width of uncer-
tainty bounds with varying results. For example, Freer et al.
[1996] showed that different likelihood measures had little
effect on the width of uncertainty bounds because the pro-
cedure retains only those models considered behavioral with
different likelihood measures having common sets of simu-
lations. Alternatively, McMichael et al. [2006] showed that
different likelihood measures and thresholds can alter the
number of behavioral models as well as the particular models
selected from Monte Carlo simulations. The impact of dif-
ferent likelihood measures on change detection using our

method was not explored, but we would expect minimal
changes in the width of uncertainty bounds and the overall
outcome of our study (see below). The effect of different
rejection criterion thresholds and number of simulations on
change detection are discussed in sections 6.2.3 and 6.2.4.

6.2. Hydrologic Model Change Detection

[s5] Figure 3 shows the importance of using a (1) control
catchment and a (2) formal statistical framework to evaluate
the significance of hydrologic changes in modeling studies.
In this figure we see that our hydrologic models consistently
undersimulated streamflow compared to observed stream-
flow. The most elementary way to use a hydrologic model
for discerning the impact of disturbance on hydrology is to
simply compare observed and simulated streamflow. For
this case, we would conclude that streamflow increased in
both catchments, though harvesting only took place in the
treated catchment. However, results from our regression
analyses show that postharvest increases in streamflow
were significantly greater than the population of preharvest
streamflow in the treated catchment, whereas significant
changes were not detected in the control catchment where no
harvesting took place. The use of a formal statistical frame-
work allows us to evaluate the significance of hydrologic
changes relative to variations in observed and simulated
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Figure 6. Time series of innovations of GLS model residuals for the treated catchment using streamflow
from the 2.5th, 50th, and 97.5th uncertainty simulations (model evaluation period horizontally shaded,
harvest period diagonally shaded). Statistically significant increases were detected for each level of
hydrologic model uncertainty; postharvest innovations exceed the 95% prediction intervals 9% of the time

for all models. Monthly moving average shown to facilitate visualization of trend.

streamflow rather than by simply comparing observed and
simulated streamflow.
6.2.1. Detecting the Absence of Land Use Change

[s6] Control catchments are used in the traditional paired
catchment approach to account for climatic variation but are
seldom used in modeling studies. By applying our method to
two periods of no land use change, our modeled catchments
serve as climatic controls. Through the application of our
change detection method to the control catchment (evaluation
1) and during a period of no disturbance in the treated

catchment (evaluation 2), we were able to critically evaluate
overall change detection model performance and, more im-
portantly, account for additional sources of variation. Sig-
nificant changes were not detected in the control catchment at
anytime during the experiment, nor during the period prior to
harvesting in the treated catchment. Evaluation results cor-
roborate the # tests performed on the climate data (section 4.4)
that climate variations in these catchments are similar
between the preharvest and postharvest periods. Thus, in
these catchments during the study period, natural variations in
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97.5th uncertainty simulations in GLS regression models. Daily streamflow is predicted using parameters
coefficients from linear regression model developed using simulations from GLUE (explanatory variable)
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climate do not contribute additional variation to the response
signal detected following harvesting in the treated catchment.
6.2.2. Detecting and Estimating Changes in Streamflow
Following Forest Harvesting

[57] Independent innovations from GLS regression models
were used to detect streamflow changes while the estimated
effects of forest harvesting on streamflow were calculated as
the residual difference between observed and predicted
streamflow. Statistically significant increases in streamflow
were detected following clear-cut harvesting 65% of the
treated catchment area. Increases in streamflow exhibit a

distinct seasonal trend with the largest increases during
winter, followed by spring, fall, and then summer (Table 3).
Forest harvesting increases streamflow by reducing canopy
interception and transpiration, modifying soil moisture
depletion [Hewlett and Hibbert, 1961], while seasonal
changes in hydrology are attributed to antecedent soil mois-
ture conditions and effective precipitation. Streamflow
increases in this study are consistent with similar studies in
the Pacific Northwest that have shown greatest increases in
streamflow during winter periods. For example, Rothacher
[1970] showed that approximately 80% of water yield
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Table 3. Streamflow Changes Following Harvesting in the Treated
Catchment®

GLS Model® (mm)

Season and
Water Year® Lower Median Upper Average (mm)
Winter
2005 ND! ND ND ND
2006 751 727 744 741
2007 420 401 414 412
2008 305 301 306 304
Average 492 476 488 485
Spring
2005 ND ND ND ND
2006 235 222 229 229
2007 69 56 64 63
2008 ND ND ND ND
Average 152 139 147 146
Summer
2005 50 49 53 51
2006 185 185 190 187
2007 60 60 65 62
2008 ND ND ND ND
Average 98 98 102 100
Fall
2005 ND ND ND ND
2006 92 89 93 91
2007 164 161 164 163
2008 88 86 90 88
Average 115 112 116 114

?GLS regression models were developed between observed streamflow
and the lower, median, and upper streamflow simulations identified by
GLUE using 850,000 simulations. Estimated effects were calculated as the
residual difference between observed and GLS-predicted streamflow.

"Model respectively median, 2.5th percentile, and 97.5th percentiles.

“Seasons defined as follows: winter is months 12, 1, 2, and 3; spring is
months 4, 5, and 6; summer is months 7, 8, and 9; and fall is months 10
and 11.

IND means no data (beyond study period).

volume increases occurred during wet October to March
following 100% harvesting of a 0.96 km” catchment in
western Oregon.

[s8] For each regression model, statistically significant
increases in postharvest innovations were detected, but esti-
mates in streamflow varied considerably. As previously
described, we use the median model to detect and describe the
effects of harvesting on streamflow, while the lower and
upper models are used to explore how varying levels of
hydrologic model uncertainty impact our ability to detect and
estimate change. The variability in estimated harvesting
effects on streamflow is expected and related to the different
models. If we use the upper, 97.5th percentile simulations,
which by definition represents overprediction of the hydro-
logic model [Beven and Binley, 1992], we would expect
lower streamflow estimates. Alternatively, the lower 2.5th
percentile model generally overestimates streamflow chan-
ges. Streamflow values in Table 3 illustrate the influence of
hydrologic model over- and undersimulation on estimated
changes in streamflow.

6.2.3. What Is the Influence of Different Likelihood
Measure Thresholds on Detecting Change?

[59] To explore the sensitivity of our method to different
likelihood thresholds, we extended our analysis to include
simulations using better fitting (R.¢> 0.60) and poorer fitting
(Reir < 0.30) behavioral models. The selected level of
behavioral model definition is somewhat arbitrary; one might
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expect that the definition of the rejection threshold may affect
the width and locations of the uncertainty bounds predicted
by GLUE.

[60] For each set of behavioral models, the proportion of
postharvest innovations that exceeded the 95% prediction
intervals was significantly greater than the 5% (Table 2)
expected from natural variation alone, suggesting stati-
stically significant changes in streamflow. Though the esti-
mates of streamflow change depends on the specified level
of model uncertainty, the ability to detect changes in post-
harvest innovations based on different levels of uncertainty
remains consistent.

[61] These results are not unexpected for two reasons: (1)
the statistical test used in this study is performed specifically
on model innovations, the random noise component of the
time series model [Chatfield, 2004], rather than on simulated
and observed streamflow. The effect of this is that much of the
model variation due to hydrologic model uncertainty is
incorporated in the regression model and is reflected in the
estimates of regression model parameters. The standard error
(s.) of GLS regression models differs little between different
likelihood thresholds; s, ranges from 0.003 and 0.004 for
models based on R.g> 0.60 and <0.30, respectively. (2) The
general lack of sensitivity to behavioral model definition is
also related to the fact that only a small number of simulations
will achieve the higher level thresholds; the majority of
parameters sets will fall in the tails of the cumulative dis-
tributions of behavioral models and have little affect of the
location of uncertainty bounds calculated by GLUE [Lamb
et al., 1998]. However, it is likely that variations due to
poorer fitting models will eventually overwhelm the ability to
detect change with increasing greater levels of model uncer-
tainty. Furthermore, different likelihood measures (e.g.,
RMSE) could change the location of uncertainty bounds and
our ability to detect change, though this was not explored
in this study. In the range of likelihood thresholds evaluated
in this study, our method is functionally robust to the vary-
ing levels of hydrologic model uncertainty and provides
a suitable framework for detecting change using hydrol-
ogic models.

6.2.4. Does the Number of Simulations Affect
Change Detection?

[62] No study we are aware of has explored the sensitivity
of model change detection to the number of simulations used
to characterize model uncertainty and, in our case, identify
uncertainty time series used in GLS-based change detection.
Though several studies focusing specifically on uncertainty
methodology have reported simulations on the order of 10°
[Brazier et al., 2000], the majority of uncertainty studies are
on the order of 10* (e.g., 15,000 [Blasone et al., 2008],
100,000 [Jin et al., 2010], 150,000 [Vrugt et al., 2009], and
500,000 [Seibert, 1997]). There is a propensity to generate an
increasingly larger set of model runs to explore parameter
space, yet how the definition and population of behavioral
models affects model change detection is not known.

[63] To assess the influence of hydrologic model popula-
tion size on the ability to detect change using our method, we
generated two additional populations of 350,000 and 50,000
simulations and repeated GLUE (R.¢ > 0.40) and GLS. In
both cases, statistically significant increases in daily stream-
flow were detected following harvesting in the treated
catchment, with 9% (350,000) and 8% (50,000) of posthar-
vest innovations exceeding 95% prediction limits (Table 4).
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Figure 8. Time series of innovations of GLS model residuals for the control catchment using streamflow
from the 2.5th, 50th, and 97.5th uncertainty simulations (hypothetical harvest period diagonally shaded).
Changes in hydrology were not detected for any level of hydrologic model uncertainty in the control
catchment; postharvest innovations exceed the 95% prediction intervals due to natural variation 4% of
the time for each model. Monthly moving average shown to facilitate visualization of trend.

These results were identical and similar to the original anal-
ysis using 850,000 simulations. s, for each model were
identical across simulation sizes and regression model para-
meters, Jy and (1, exhibited little change between models
(Table 4). Differences are so small between three population
sizes because 50,000 simulations was large enough to capture

variations in hydrologic model output in our catchments
during the study period.
6.2.5. Overcoming Limitations of the Paired
Catchment Approach

[64] Though the paired catchment study continues to be the
predominant method for detecting and estimating hydrologic
changes following disturbance, it has its limitations. (1) As
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Figure 9. Time series of innovations of GLS model applied prior to harvesting in the treated catchment.
This evaluation is used to test whether our method is capable of not detecting change in a period with no
disturbance. Changes in hydrology were not detected during the preharvest period in the treated catchment
for any level of hydrologic model uncertainty; postharvest innovations exceed the 95% prediction intervals
due to natural variation 3% of the time for each model (the figure shows evaluation period with respect to

study period.)

the name suggests, this approach requires a control catch-
ment that serves as a climatic reference for the duration of
the experiment. However, suitable control catchments are
seldom available due to harvesting schedules, market pres-
sures, and the identification of similarity in catchment char-
acteristics to warrant pairing. (2) Long calibration periods
and large sample sizes are needed to reliably detect changes

unless variance is small and changes are small relative to the
mean [Loftis et al., 2001]. Though time series can be used to
increase sample size, time series data can increase temporal
variations in chronologically paired observations, thereby
increasing the width of prediction limits and obfuscating the
the effects of disturbance on streamflow [Zégre, 2009]. (3)
Chronological pairing of flood events and inappropriate
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Table 4. GLS Regression and AR Modeling Results for the Treated
and Control Catchments®

Percent Postharvest

Model® df k ¢, ol G B Se Innovations®
Treated
850,000
Lower 531 2 0.79 —0.14 0.002 1.5 0.003 9
Median 531 2 0.76 —0.17 0.001 1.5 0.003 9
Upper 531 2 0.76 -0.16 0.001 1.5 0.003 9
350,000
Lower 531 2 0.75 —0.17 0.005 1.6 0.003 9
Median 531 2 0.76 —0.17 0.001 1.5 0.003 9
Upper 531 2 0.75 -0.16 0.001 1.5 0.003 9
50,000
Lower 531 2 0.77 —0.16 0.002 1.3 0.003 8
Median 531 2 0.76 -0.16 0.002 0.003 8
Upper 531 2 0.76 —0.16 0.002 0.003 8
Control
850,000
Lower 531 2 2 0.87 -0.21 0.02 1.69 4
Median 531 2 2 0.87 -0.21 0.02 1.69 4
Upper 531 2 2 0.87 -0.21 0.02 1.69 4

#Coefficients Bo, Bo are estimated by regression, k is the order of
autocorrelation, ¢; and ¢, are estimated autocorrelation coefficients
selected by AIC, and s, is the standard error of the estimate. Eight hundred
fifty thousand simulations were used for change detection in the treated
and control catchments. To assess the influence of population size on the
ability to detect change using our method, two additional populations of
350,000 and 50,000 were generated for the treated catchment. With
selected significance level of a = 0.05, 5% of estimated innovations should
fall outside of the 95% predictions intervals due to random error.
Statistically significant changes are noted if greater then 5% of the
innovations exceed prediction intervals.

Shown is the number of Monte Carlo simulations.

“Postharvest innovations exceedance of 95% prediction limits; postharvest
period in the control catchment is hypothetical for change detection
evaluation (1).

use of statistical analysis can result in incorrect estimates
of changes in flood magnitude because neither the pairing
or statistical tests account for changes in variance or flood
frequency. Problems with chronological pairing of floods
results from differences in timing, duration, intensity, or spatial
extent [Thomas and Megahan, 1998] between the paired
catchments.

[65] Our change detection method is a useful alternative
to the traditional paired catchment approach as it addresses these
issues. By using a rainfall-runoff model to reconstruct stream-
flow, we generate a virtual control that can be used in lieu of
establishing an actual control on the ground. An individual
catchment therefore serves as the treated and control catchment
thereby reducing spatial and temporal variations exhibited
between paired catchments. This is especially useful when using
daily streamflow observations that tend to be desynchronized
between catchments. Our method overcomes the problems
associated with chronological pairing in the paired catchment
approach [Alila et al., 2009] as our method focuses on meteo-
rological pairing between modeled and observed streamflow
responses within the same catchment. As a result, paired
observations of daily streamflow from the same catchment do
not exhibit lag as shown by the lack of statistical evidence to
include sinusoidal covariates. Therefore, error is primarily
associated with how well the rainfall-runoff model mimics the
behavior of the catchment under consideration. Further, our
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approach remains in accordance with the original principals of
ANCOVA [Alila et al., 2009] as our alternative hypothesis is
that “postharvest innovations exceed prediction limits”; predic-
tion limits are based on the variance of predisturbance models.

7. Conclusion

[66] In this study we present an alternative to the paired
catchment approach to detect the effects of disturbance on
catchment hydrology. Our method combines hydrologic
modeling, uncertainty analysis, and regression time series
modeling to isolate the effects of forest harvesting from input
errors, model identification, and the large natural variability
attributed to daily streamflow. Specifically, we used hydro-
logic modeling to account for natural fluctuations in daily
streamflow and GLUE to identify and separate uncertainty
from unexplained variation. Though GLUE does not pro-
vide insight on structural or input uncertainty, we demonstrate
the use of GLUE to estimate model uncertainty and the effect
of uncertainty on change detection. Furthermore, we provide
a formal experimental framework to evaluate the signifi-
cance of hydrologic change relative to variations in rainfall
and streamflow.

[67] This study is unique from other modeling studies in
that we evaluate the stationarity of climate records using GLS
to compute 7 tests in autocorrelated observations to assess the
impact of climate variations on detecting change and apply
our change detection method to a control catchment (evalu-
ation 1) and to a period prior-to forest harvesting in a treated
catchment (evaluation 2) to demonstrate that our method was
capable of capturing not only land use changes when they
occur but also the absence of land use change. These exercises
serve to critically evaluate overall change detection model
performance and, more importantly, account for additional
sources of variation that may ordinarily obfuscate or inflate
the true effects of disturbance. In addition, we show that our
method was robust under different levels of model uncer-
tainty defined by three levels of R.¢rand show that an increase
in the number of model simulations does not necessarily
result in increased change detection performance.

[68] The proposed method is a potentially useful alternative
to the paired catchment approach for detecting change using
highly variable daily hydrology data and stand-alone hydro-
logic modeling. Further, this approach can be useful to
construct virtual control catchments when it is impossible to
establish reference catchments on the ground. Though
developed and tested for evaluating the effects of forest
harvesting on hydrology, the proposed method may be
applicable to studies evaluating and forecasting change in
water resources resulting from fire, insect denudation,
urbanization, and directional climate change.
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